Wednesday, 21 December 2011
Saturday, 17 December 2011
Wednesday, 14 December 2011
c program of Least Square method for curve fitting.
Implementation of Least-square method for curve fitting.
#include<stdio.h>
#include<conio.h>
#include<math.h>
main()
{
float x[10],y[10],a[10][10];
int i,j,k,n,itr;
printf("\n ENTER THE SIZE OF MATRIX n:");
scanf("%d",&n);
printf("\n ENTER MATRIX ELEMENTS AND RHS:\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n+1;j++)
scanf("%f",&a[i][j]);
}
for(i=1;i<=n;i++)
{
x[i]=0.0;
y[j]=0.0;
}
itr=0.0;
top:
itr=itr+1;
for(i=1;i<=n;i++)
{
x[i]=a[i][n+1];
for(j=1;j<=n;j++)
{
if(i==j)
continue;
else
x[i]=x[i]-a[i][j]*x[j];
}
x[i]=x[i]/a[i][j];
}
for(k=1;k<=n;k++)
if(fabs(x[k]-y[k])>0.0001)
{
printf("\n ITERATION=%d}",itr);
for(i=1;i<=n;i++)
{
y[i]=x[i];
printf("\n x(%d)=%f",i,x[i]);
}
goto top;
}
else
continue;
return;
}
c program of simpson's 1/3 rule.
Implementation of Simpson’s 1/3 Rule.
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<process.h>
#include<string.h>
float fun(float);
void main()
{
float result=1;
float a,b;
float h,sum;
int i,j;
int n;
clrscr();
printf("\n\n Enter the range-");
printf("\n\n Lower Limit a-");
scanf("%f",&a);
printf("\n\n Lower Limit b-");
scanf("%f",&b);
printf("\n\n Enter number of subintervals -");
scanf("%d",&n);
h=(b-a)/n;
sum=0;
sum=fun(a)+4*fun(a+h)+fun(b);
for(i=3;i<n;i++)
{
sum+=fun(a+(i-1)*h)+4*fun(a+i*h);
}
result=sum*h/3;
printf("\n\n\n\n Value of the integral is %6.4f\t",result);
printf("\n\n\n Press Enter to Exit");
getch();
}
float fun(float x)
{
float temp;
temp=1/(1+(x*x));
return temp;
}
c program of Gauss-seidel method.
#include<stdio.h>
#include<conio.h>
#include<math.h>
main()
{
float x[10],y[10],a[10][10];
int i,j,k,n,itr;
printf("\n ENTER THE SIZE OF MATRIX n:");
scanf("%d",&n);
printf("\n ENTER MATRIX ELEMENTS AND RHS:\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n+1;j++)
scanf("%f",&a[i][j]);
}
for(i=1;i<=n;i++)
{
x[i]=0.0;
y[j]=0.0;
}
itr=0.0;
top:
itr=itr+1;
for(i=1;i<=n;i++)
{
x[i]=a[i][n+1];
for(j=1;j<=n;j++)
{
if(i==j)
continue;
else
x[i]=x[i]-a[i][j]*x[j];
}
x[i]=x[i]/a[i][j];
}
for(k=1;k<=n;k++)
if(fabs(x[k]-y[k])>0.0001)
{
printf("\n ITERATION=%d}",itr);
for(i=1;i<=n;i++)
{
y[i]=x[i];
printf("\n x(%d)=%f",i,x[i]);
}
goto top;
}
else
continue;
return;
}
c program of Regular-Falsi Method.
Implementation of Regular-Falsi Method.
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<string.h>
#include<process.h>
#define EPS 0.00005
#define f(x) 3*x+sin(x)-exp(x)
void FAL_POS();
void main()
{
clrscr();
printf("\n Solution by FALSE POSITION method\n");
printf("Equation is");
printf("\n\t\t\t 3*x+sin(x)=0\n\n");
FAL_POS();
void FAL_POS()
{
float f0,f1,f2;
float x0,x1,x2;
int i;
printf("Enter the number of iteration:");
scanf("%d",&itr);
for(x1=0.0;;)
{
f1=f(x1);
if(f1>0)
{
break;
}
else
{
x1=x1+0.1;
}
}
x0=x1-0.1;
f0=f(x0);
printf("\n\t\t----------------------------");
printf("\n\t\t ITERATION\t x2\t\t F(x)\n");
for(i=0;i<itr;i++)
{
x2=x0-((x1-x0)/(f1-f0))*f0;
f2=f(x2);
if(f0*f2>0)
{
x1=x2;
f1=f2;
}
else
{
x0=x2;
f0=f2;
}
if(fabs(f(2))>EPS)
{
printf("\n\t\t %d\t%f\n",i+1,x2,f2);
}
}
printf("\t\t---------------------------");
printf("\n\t\t\tRoot=%f\n",x2);
printf("\t\t---------------------------");
getch();
}
c program of Bisection Method.
Implementation of Bisection Method.
#include<stdio.h>
#include<math.h>
#include<conio.h>
#include<process.h>
#include<string.h>
#define EPS 0.00000005
#define F(x) (x)*log10(x)-1.2
void Bisect();
int count=1,n;
float root=1;
void main()
{
clrscr();
printf("\n Solution by BISECTION method\n");
printf("\ Equation is");
printf("\n\t\t\t x*log(x)-1.2=0 \n");
printf("\n Enter the number of iterations\n");
scanf("%d",&n);
Bisect();
getch();
}
void Bisect()
{
float x0,x1,x2;
float f0,f1,f2;
for(x2=1; ;x2++)
{
f2=F(x2);
if(f2>0)
{
break;
}
}
for(x1=x2-1; ;x2++)
{
f1=F(x1);
if(f1<0)
{
break;
}
}
printf("\t\t----------------------------------------");
printf("\n\t\t ITERATIONS\t\t\ ROOTS\n");
printf("\t\t-----------------------------------------");
for(;count<n;count++)
{
x0=(x1+x2)/2.0;
f0=F(x0);
if(f0==0)
{
root=x0;
}
if(f0*f1<0)
{
x2=x0;
}
else
{
x1=x0;
f1=f0;
}
printf("\n\t\t ITERATION%d",count);
printf("\t :\t %f",x0);
if(fabs((x1-x2)/x1) <EPS)
{
printf("\n\t\t--------------------------------");
printf("\n\t\t Root= %f",x0);
printf("\n\t\t Iterations = %d\n",count);
printf("\t\t-----------------------------------");
getch();
exit(0);
}
}
printf("\n\t\t-------------------------------------");
printf("\n\t\t\t Root = %7.4f",x0);
printf("\n\t\t\t Iteration = %d\n", count-1);
printf("\t\t---------------------------------------");
getch();}
c program of Trapezoidal Rule.
Implementation of Trapezoidal Rule.
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<process.h>
float fun(float);
void main()
{
float result=1;
float a,b;
float h,sum;
int i,j;
int n;
clrscr();
printf("\n\n Enter the range-");
printf("\n\n Lower Limit a-");
scanf("%f",&a);
printf("\n\n Upper Limit b-");
scanf("%f",&b);
printf("\n\n Enter number of subintervals-");
scanf("%d",&n);
h=(b-a)/n;
sum=0;
sum=fun(a)+fun(b);
for(i=1;i<n;i++)
{
if(i%3==0)
{
sum+=2*fun(a+i*h);
}
result=sum*h/2;
printf("\n\n\n Value of the intergal is %6.4f\t",result);
printf("Press enter to Exit");
getch();
}
float fun(float x)
{
float temp;
temp=1/(1+(x*x));
return temp;
}
c program of simpson's 3/8 rule.
C Propgram to implement simpson's 3/8rd rule.
#include<stdio.h>
#include<math.h>
#include<conio.h>
#include<process.h>
#include<string.h>
float fun(float);
void main()
{
float result=1;
float a,b;
float h,sum;
int i,j;
int n;
clrscr();
printf("\n\n Enter the range-");
printf("\n\n Lower Limit a-");
scanf("%f",&a);
printf("\n\n Upper Limit b-");
scanf("%f",&b);
printf("\n\n Enter number of subintervals-");
scanf("%d",&n);
h=(b-a)/n;
sum=0;
sum=fun(a)+fun(b);
for(i=1;i<n;i++)
{
if(i%3==0)
{
sum+=2*fun(a+i*h);
}
else
{
sum+=3*fun(a+(i)*h);
}
}
result=sum*3*h/8;
printf("\n\n\n Value of the intergal is %6.4f\t",result);
printf("Press enter to Exit");
getch();
}
float fun(float x)
{
float temp;
temp=1/(1+(x*x));
return temp;
}
c programe of Newton backward interpolation formula
Implementatio of Newton’s Backward Interpolation Formula.
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<process.h>
#include<string.h>
void main()
{
int n;
int i,j,k;
float mx[10];
float my[10];
float x;
float x0=0;
float y0;
float sum;
float h;
float fun;
float p;
float diff[20][20];
float y1,y2,y3,y4;
clrscr();
printf("\n Enter the number of term -");
scanf("%d",&n);
printf("\n Enter the value in the form of x - -");
for(i=0;i<n;i++)
{
printf("\n Enter the value of x%d -",i+1);
scanf("%f",&mx[i]);
}
printf("\n Enter the value in the form of y - -");
for(i=0;i<n;i++)
{
printf("\n Enter the value of y%d -",i+1);
scanf("%f",&my[i]);
}
printf("\n Enter the value of x for- -");
printf("\n which you want the value of y -");
scanf("%f",&x);
h=mx[1]-mx[0];
for(i=0;i<n-1;i++)
{
diff[i][1]=my[i+1]-my[i];
}
for(j=2;j<=4;j++)
{
for(i=0;i<n-j;i++)
{
diff[i][j]=diff[i+1][j-1]-diff[i][j-1];
}
}
i=0;
while(!mx[i]>x)
{
i++;
}
x0=mx[i];
sum=0;
y0=my[i];
fun=1;
p=(x-x0)/h;
sum=y0;
for(k=1;k<=4;k++)
{
fun=(fun*(p-(k-1)))/k;
sum=sum+fun*diff[i][k];
}
printf("\n when x=%6.4f,y=%6.8f",x,sum);
printf("\n\n\n Press Enter to Exit");
getch();
}
Subscribe to:
Posts (Atom)