
UNIT:3
1)     
Let S be any collection of sets. The relation ‘is subset of ‘
is partial ordering of S . Verify.
2)     
Let A= {a,b}. Describe all partial order relation on A.
3)     
Define POSET and Hasse Diagram.
4)     
Let A = { 1,2,3 ,4,6,8,9,12,18,24} be ordered by relation ‘X
divides Y’. Draw  the Hasse Diagram.
5)     
Consider the subsets {2,3}, {4,6} and {3,6} in the poset (
{1,2,3,4,5,6},/) find upper bounds, Lower bounds, Suprimum and Infimum  for each subset if exits.
6)     
Find all sub Lattices of D24 that contains five or
more elements.
7)     
Show the relation “ less than or equal to “ on the set of
integers is a partial order.
8)     
Consider the poset A= ({1,2,3,4,6,9,12,18,36},/). Find the
greatest lower bound and least upper 
bound of the sets {6,18} and {4,6,9}.
9)     
Define Isomorphic Lattices with example.
10) 
Prove that the power set P of a set  S is a Lattice under the operation ∩ and U.
11)  What
is an Ordered set ?. 
12)     
Find the complement of each element of D42.
13) 
Using truth table verify De-Morgans Law.
14) 
Simplify Boolean function algebraically and write circuit
diagram. (AB+C).(B+C)+C
15) 
Draw K- Map and simplify :F(A,B,C,D) = ∑
(0,2,6,8,10,12,14,15)
16) 
Write the following Boolean expression in an equivalent
product of sums canonical    forming  three variables A, B, and C:      (i)AB                                      (ii)AB’+A’B
17) 
Simplify the Boolean Expression: (a) C(B+C) (A+B+C)  (b) 
A+B(A+B)+A(A’+B)
18) 
Draw Circuit diagram and truth table for Ex OR and Ex Nor
gate having two input.
19) 
Simplify Boolean Function using K-Map 
                                                              
i.     
F(A,B,C,D)= Σ (0,1,2,3,4,5,6,7,8,9,11)
20) 
Write the dual of each Boolean equation: (i)
(a*1)*(0+a’)=0   (ii) a + a’b = a+b
------END------
 
No comments:
Post a Comment