Thursday, 5 January 2012



 


UNIT:3


1)      Let S be any collection of sets. The relation ‘is subset of ‘ is partial ordering of S . Verify.
2)      Let A= {a,b}. Describe all partial order relation on A.
3)      Define POSET and Hasse Diagram.
4)      Let A = { 1,2,3 ,4,6,8,9,12,18,24} be ordered by relation ‘X divides Y’. Draw  the Hasse Diagram.
5)      Consider the subsets {2,3}, {4,6} and {3,6} in the poset ( {1,2,3,4,5,6},/) find upper bounds, Lower bounds, Suprimum and Infimum  for each subset if exits.
6)      Find all sub Lattices of D24 that contains five or more elements.
7)      Show the relation “ less than or equal to “ on the set of integers is a partial order.
8)      Consider the poset A= ({1,2,3,4,6,9,12,18,36},/). Find the greatest lower bound and least upper  bound of the sets {6,18} and {4,6,9}.
9)      Define Isomorphic Lattices with example.
10)  Prove that the power set P of a set  S is a Lattice under the operation ∩ and U.
11)  What is an Ordered set ?.
12)      Find the complement of each element of D42.
13)  Using truth table verify De-Morgans Law.
14)  Simplify Boolean function algebraically and write circuit diagram. (AB+C).(B+C)+C
15)  Draw K- Map and simplify :F(A,B,C,D) = ∑ (0,2,6,8,10,12,14,15)
16)  Write the following Boolean expression in an equivalent product of sums canonical    forming  three variables A, B, and C:     (i)AB                                      (ii)AB’+A’B
17)  Simplify the Boolean Expression: (a) C(B+C) (A+B+C)  (b)  A+B(A+B)+A(A’+B)
18)  Draw Circuit diagram and truth table for Ex OR and Ex Nor gate having two input.
19)  Simplify Boolean Function using K-Map
                                                               i.      F(A,B,C,D)= Σ (0,1,2,3,4,5,6,7,8,9,11)
20)  Write the dual of each Boolean equation: (i) (a*1)*(0+a’)=0   (ii) a + a’b = a+b


------END------

No comments:

Post a Comment